
www.epstrategies.com

Optimizing Performance at the
Speed of Light:

Why I/O Avoidance is Even More
Important Today

Scott Chapman

Enterprise Performance Strategies, Inc.

Scott.Chapman@EPStrategies.com

Larry Strickland

DataKinetics

lstrickland@dkl.com

www.epstrategies.com
© Enterprise Performance Strategies 2

Contact, Copyright, and Trademarks

Questions?

Send email to performance.questions@EPStrategies.com, or visit our website at https://www.epstrategies.com or
http://www.pivotor.com.

Copyright Notice:

© Enterprise Performance Strategies, Inc. All rights reserved. No part of this material may be reproduced, distributed,
stored in a retrieval system, transmitted, displayed, published or broadcast in any form or by any means, electronic,
mechanical, photocopy, recording, or otherwise, without the prior written permission of Enterprise Performance
Strategies. To obtain written permission please contact Enterprise Performance Strategies, Inc. Contact information can
be obtained by visiting http://www.epstrategies.com.

Trademarks:
Enterprise Performance Strategies, Inc. presentation materials contain trademarks and registered trademarks of several
companies.

The following are trademarks of Enterprise Performance Strategies, Inc.: Health Check®, Reductions®, Pivotor®

The following are trademarks of the International Business Machines Corporation in the United States and/or other
countries: IBM®, z/OS®, zSeries®, WebSphere®, CICS®, DB2®, S390®, WebSphere Application Server®, and many others.

Other trademarks and registered trademarks may exist in this presentation

© Enterprise Performance Strategies
www.epstrategies.com

mailto:performance.questions@EPStrategies.com
https://www.epstrategies.com/
http://www.pivotor.com/

www.epstrategies.com

Abstract (why you’re here!)

Long gone are the days of the mainframe processors having relatively low processor
speeds and relatively small memory sizes. The modern mainframe can have TBs of
memory, and the processor clock speeds are among the fastest in the world. Fast
processors wait at the same speed as slow processors, but the opportunity cost of
waiting is higher. Optimizing processor performance today is all about keeping data as
close as possible to the CPU core and reducing the instruction count needed to get to a
piece of data. In this webinar, special guest Larry Strickland from Data Kinetics will
join Scott Chapman for an interesting discussion into why I/O avoidance is more
important today and different ways that can be accomplished.

© Enterprise Performance Strategies 3
www.dkl.com
Data Kinetics

www.epstrategies.com

EPS: We do z/OS performance…

●Pivotor - Reporting and analysis software and services
◦ Not just reporting, but analysis-based reporting based on our expertise

●Education and instruction
◦ We have taught our z/OS performance workshops all over the world

●Consulting
◦ Performance war rooms: concentrated, highly productive group discussions and analysis

●Information
◦ We present around the world and participate in online forums

https://www.pivotor.com/content.html

https://www.pivotor.com/content.html

www.epstrategies.com

DKL intro

●Established in 1977

●The global leader in data performance and optimization solutions.

●Solving IT problems and reducing IT costs for the Fortune 500

●Flagship Product tableBASE has been deployed more than 40 years

●IBM Business partner

© Enterprise Performance Strategies 5
www.dkl.com
Data Kinetics

www.epstrategies.com

Agenda

●How fast are modern processors and how slow is modern I/O?

●How can we find opportunities for improvement?

●How can we make improvements?

© Enterprise Performance Strategies 6
www.dkl.com
Data Kinetics

www.epstrategies.com
© Enterprise Performance Strategies 7

Fast processors, slow I/O

www.dkl.com
Data Kinetics

www.epstrategies.com

Clock Speed and Cycles

●In one z16 clock cycle, light in a vacuum can only travel just over 2 inches!
◦ Electrical signal in a circuit is much slower (40-70% of c)
◦ 1 meter in fiber ~ 5 ns (>25 clock cycles!)

●Need to make a round trip

●Signal paths aren’t as the mosquito flies
◦ IBM’s “Miles of wire in the chip” numbers:

◦ zEC12 – 7.7 miles
◦ z13 – Over 13 miles
◦ z14 – 14 miles
◦ z15 – 15.6 miles
◦ z16 – 19 miles

●Physical distance matters!
◦ Basically, to get off the chip, it’s going to take multiple clock cycles

© Enterprise Performance Strategies 8
www.dkl.com
Data Kinetics

www.epstrategies.com

Somehow (magic of good
processor engineering)
most systems are able to
get an instruction
completed every 2-3 clock
cycles.

This is a broad average of
course—different
instructions will take
different amounts of time
both due to instruction
complexity and how close
the data is to the core.

Somehow (magic of good
processor engineering)
most systems are able to
get an instruction
completed every 2-3 clock
cycles.

This is a broad average of
course—different
instructions will take
different amounts of time
both due to instruction
complexity and how close
the data is to the core.

9
© Enterprise Performance
Strategies

www.dkl.com
Data Kinetics

www.epstrategies.com

System Event Timescale (Seconds)

© Enterprise Performance Strategies
10

900.0 Common RMF measurement Interval
 10.0 WLM policy interval
 2.0 HiperDispatch interval
 1.0 1 second (s) (Common RMF sampling interval)
 0.250 SRM sampling interval
 0.2 Faster-than-average human visual reaction time
 0.1 Typical LPAR VH processor time slice
 0.0125 Typical LPAR VM/VL processor time slice
 0.008 Typical cache miss disk I/O (spinning disk)
 0.0032 Typical default zIIPAWMT
 0.001 1 millisecond (ms, thousandths)
 0.0005 Typical average modern I/O
 0.0002 Typical cache hit I/O
 0.000030 Possible major z/OS time slice
 0.000016 Possible average successful zHyperlink I/O
 0.000006 Possible minor z/OS time slice
 0.000003 Possible fast successful zHyperlink I/O
 0.000001 1 microsecond (µs, millionths)
 0.000000162 Main memory access(?)
 0.000000001 1 nanosecond (ns, billionths)
 0.0000000002 1 z13 machine cycle (5 Ghz)
 0.00000000019 1 z14/z15/z16 machine cycle (5.2 Ghz)

m
ill

is
ec

o
n

d
s

m
ic

ro
se

co
n

d
s

www.epstrategies.com

So we should use zHyperLink?

●Not all I/O eligible to be converted to zHyperLink

●zHyperLink promises response times on order of 10s of μs for cache hits
◦ Also, no I/O interrupt delay because processor spins while waiting on the I/O
◦ Some of I/O overhead of spinning offset by improved CPU L1/L2 cache hits
◦ Unsuccessful zHyperLink I/O will result in driving a FICON I/O to complete the I/O

●This is still much slower than main memory
◦ Extrapolating from some published numbers, z16 main memory access might be on

the order of 162ns (0.162μs)
◦ Rough estimate, for memory on the same book
◦ L3 would of course be even faster—supposedly on the order of 12ns1

●Reading 4K from memory probably 15-100x faster than zHyperlink
◦ Means corresponding reduction in the CPU time impact too!

© Enterprise Performance Strategies 12

1: https://www.anandtech.com/show/16924/did-ibm-just-preview-the-future-of-caches

www.dkl.com
Data Kinetics

www.epstrategies.com

DASD cache is limited

●Controller cache is good, but somewhat limited
◦ IBM DS8900F – max cache size is 4.3 TB

◦ Hitachi DS 5600 – 2 TB/controller block up to 6 TB

◦ Dell PowerMax – 15* TB on PowerMax 2500 and 45* TB on PowerMax 8500
◦ But those are raw numbers and there’s cache mirroring

●Processor can have huge memory in comparison
◦ z16 A01 – Max 40 TB

◦ z16 A02 – Max 16 TB

◦ z/OS LPAR – 16TB (z/OS 3.1)

◦ Recent review of our customers’ configs showed largest LPAR was 4 TB!
◦ LPARs > 1TB certainly becoming more common

© Enterprise Performance Strategies 13
www.dkl.com
Data Kinetics

www.epstrategies.com

The only good I/O is no I/O

●Yes, I/O can be really fast today, but it still takes time
◦ But memory is extremely fast
◦ I/O: hundreds of microseconds
◦ z/Hyperlink: up to tens of microseconds
◦ Memory: fraction of a microsecond

● I/O still takes CPU
◦ Giving up the CPU while waiting for the I/O to complete means that when redispatched, the

work likely won’t have its data and instructions in L1 cache
◦ zHyperLink spins on CPU while waiting for completion

●Software cost driven by CPU utilization
◦ Usually: Software Cost > Hardware Cost

●Performance gated by bottlenecks
◦ I/O not always the bottleneck, but is a common one

© Enterprise Performance Strategies 14

www.epstrategies.com 15

LPARs with 10s to even
100s of GBs of free
memory are not that
unusual today!

Maybe we can use that
to keep more data closer
to the processor!

LPARs with 10s to even
100s of GBs of free
memory are not that
unusual today!

Maybe we can use that
to keep more data closer
to the processor!

www.epstrategies.com
www.dkl.com
Data Kinetics

www.epstrategies.com

So, if you avoid I/O…

●Performance is improved, making the users happier
◦ To the degree that users are happy with better performance

◦ (And the degree that they notice)

●Possibly reduce CPU consumption, possibly reducing software cost
◦ Financial people are only happy with zero cost, but maybe they’ll be less unhappy?

●Possibly make better use of unused resources, i.e. memory
◦ Management will find something else to critique

●So avoid “unnecessary” I/O
◦ Is any read I/O “necessary”? (Yes, but… maybe pretend not!)

© Enterprise Performance Strategies 16
www.dkl.com
Data Kinetics

www.epstrategies.com
© Enterprise Performance Strategies 17

Finding opportunities

www.dkl.com
Data Kinetics

www.epstrategies.com

Finding opportunities in SMF data

●I/O related information is all over in the SMF records
◦ Type 14/15 – Old DD-related I/O

◦ Type 30 – Summary I/O at job/step

◦ Type 42 – Volume and dataset level I/O

◦ Type 64 – VSAM Status

◦ Type 71 – Paging

◦ Type 72 – I/O by service class/report class

◦ Type 74 – Volume level I/O details

◦ Type 75 – I/O by page dataset

◦ Type 100-102 – Various Db2 details, including Db2 I/O

◦ Type 110 – CICS details, including CICS I/O

◦ Others – Sort, Vendor-specific DASD measurements, etc.

© Enterprise Performance Strategies 18

Particularly interesting
and “easy”

www.epstrategies.com

SMF 42: not quite ideal, but good

●Has both interval and “close” statistics at dataset level
◦ Interval statistics controlled by SMF interval: ideally 5, 10, or 15 minutes

(If your interval is >15 minutes please change to 15, and sync those intervals!)

◦ But intervals are not written if no I/O, so final close record may cover larger than
expected timeframe

●Has some I/O response times at microsecond level precision
◦ Some also at 128-microsecond (0.128ms) precision like RMF/CMF

●Has details about cache hit/misses

●Overall, 42.6 excellent source for understanding what is doing I/O!

© Enterprise Performance Strategies 19
www.dkl.com
Data Kinetics

www.epstrategies.com
© Enterprise Performance Strategies 20

Example 1

www.epstrategies.com

Note the two
importance 1 service
classes each doing a bit
under 1000 IOPS during
the daytime hours.

This customer’s CPU
generally was highest
during those hours, so
despite the higher I/O
rates later in the day I
was most interested in
that daytime activity.

This data comes from
the SMF 72 records.

Note the two
importance 1 service
classes each doing a bit
under 1000 IOPS during
the daytime hours.

This customer’s CPU
generally was highest
during those hours, so
despite the higher I/O
rates later in the day I
was most interested in
that daytime activity.

This data comes from
the SMF 72 records.

21 www.dkl.com
Data Kinetics

www.epstrategies.com 22

Interestingly, the MISPRDSG
storage group shows a
similar profile of I/O activity
to those two service classes
and is actually a bit over
1,000 IOPS during those
daytime hours.

The volumes that don’t
belong to a storage group
are generating even more
I/O but I thought I’d start
with the storage group
volumes.

Interestingly, the MISPRDSG
storage group shows a
similar profile of I/O activity
to those two service classes
and is actually a bit over
1,000 IOPS during those
daytime hours.

The volumes that don’t
belong to a storage group
are generating even more
I/O but I thought I’d start
with the storage group
volumes.

www.dkl.com
Data Kinetics

www.epstrategies.com 23

So I wondered if any of
these top volumes
would just happen to be
in that storage group of
interest. As it turned
out, in fact SM2124 was!

Note this is an average
I/O rate over 24 hours.

So I wondered if any of
these top volumes
would just happen to be
in that storage group of
interest. As it turned
out, in fact SM2124 was!

Note this is an average
I/O rate over 24 hours.

www.dkl.com
Data Kinetics

www.epstrategies.com 24

Here’s the read and
write rate for that
particular volume over
time. Virtually all of the
I/O is read I/O, implying
that perhaps that could
be avoided if we could
cache that data in
memory.

Here’s the read and
write rate for that
particular volume over
time. Virtually all of the
I/O is read I/O, implying
that perhaps that could
be avoided if we could
cache that data in
memory.

www.dkl.com
Data Kinetics

www.epstrategies.com 25

In this case we also have at least the
volume-level DCOLLECT data from the
customer so we can see that surprisingly,
there’s less than 1.5 GB of data stored on
the volume!

Lacking the SMF 42.6 records, we don’t
know what datasets are doing the I/O but
1.5 GB is small enough that they could
easily store all of that in memory. Doing
so could get rid of a significant chunk of
their daytime I/O.

In this case we also have at least the
volume-level DCOLLECT data from the
customer so we can see that surprisingly,
there’s less than 1.5 GB of data stored on
the volume!

Lacking the SMF 42.6 records, we don’t
know what datasets are doing the I/O but
1.5 GB is small enough that they could
easily store all of that in memory. Doing
so could get rid of a significant chunk of
their daytime I/O.

www.dkl.com
Data Kinetics

www.epstrategies.com
© Enterprise Performance Strategies 26

Example 2

Coming from the SMF 42 Perspective

www.dkl.com
Data Kinetics

www.epstrategies.com 27

This reports looks at the
total I/O over (in this
case) a day from the
SMF 42 records and
breaks it down by reads
vs. writes and by what
the dataset is (probably)
used for.

This site is not unusual:
the vast majority of the
I/O is reading from DB2
objects.

This reports looks at the
total I/O over (in this
case) a day from the
SMF 42 records and
breaks it down by reads
vs. writes and by what
the dataset is (probably)
used for.

This site is not unusual:
the vast majority of the
I/O is reading from DB2
objects.

www.dkl.com
Data Kinetics

www.epstrategies.com 28

The top dataset appears to
be all reads, but oddly, only
a tiny fraction of those
apparently are flagged as
being cache candidates. I’m
not sure why that is, but
probably has to do with how
the I/O was initiated. In
modern control units all I/O
passes through cache.

The top dataset appears to
be all reads, but oddly, only
a tiny fraction of those
apparently are flagged as
being cache candidates. I’m
not sure why that is, but
probably has to do with how
the I/O was initiated. In
modern control units all I/O
passes through cache.

www.epstrategies.com 29

This table report joins the
SMF 42 data with the
DCOLLECT data to get the
total allocated size
(summed across multiple
volumes if necessary) of
the datasets.

Note there’s little write
activity and a number of
these datasets are only a
few GB.

Even if they can’t all go into
memory, probably some
can, saving 10s of millions
of I/Os.

This table report joins the
SMF 42 data with the
DCOLLECT data to get the
total allocated size
(summed across multiple
volumes if necessary) of
the datasets.

Note there’s little write
activity and a number of
these datasets are only a
few GB.

Even if they can’t all go into
memory, probably some
can, saving 10s of millions
of I/Os.

www.dkl.com
Data Kinetics

www.epstrategies.com
© Enterprise Performance Strategies 30

How can we do less I/O?

www.dkl.com
Data Kinetics

www.epstrategies.com

Sorting

●Sort products can make good use of memory for in-memory sorts

●This has been true for decades
◦ Make sure you have your parms right: use available memory, don’t cause problems

●New SORTL facility on z15 allows even more improvement

●DFSORT exploitation called “IBM Z Sort”
◦ Requires memory >= 70% of dataset size, 200% is recommended planning number
◦ IBM test of 44GB sort resulted ~50% reduction in ET and ~40% reduction in CPU vs.

in-memory sort without ZSORT
◦ But, somewhat oddly, using SORTWK was actually about the same CPU as ZSORT,

although it took almost 9x longer (341 seconds vs 39 seconds)
◦ So performance savings, but not really CPU savings compared to doing I/O

●I haven’t seen a SyncSort benchmark

© Enterprise Performance Strategies 31

https://www.ibm.com/support/pages/ibm-z-sort-and-dfsort-considerations

www.dkl.com
Data Kinetics

https://www.ibm.com/support/pages/ibm-z-sort-and-dfsort-considerations

www.epstrategies.com

In-Memory Sort

www.dkl.com
Data Kinetics

www.epstrategies.com

In-Memory Sort :DB2

●Db2 v12 improved its RDS sort processing using more memory:

●Expanded the maximum number of nodes in a sort tree, from 32,000 to
512,000 for non-parallel sorts or 128,000 for parallel sorts under child tasks.

●These enhancements might require more memory to be allocated to the
thread for sort activities, but can result in a significant CPU reduction.

●Requires the use of more memory – but ….

www.dkl.com
Data Kinetics

www.epstrategies.com

Sort performance measurements (DB2 v12)

●In-memory sorts that previously required work files for sort and merge
processing

◦ 75% reduction in CPU time

●Increased sort pool size
◦ 50% reduction in elapsed time and CPU time

www.dkl.com
Data Kinetics

www.epstrategies.com

Sort performance measurements (cont’d)

●SAP workloads

● SAP CDS Fiori: 5% CPU time reduction for several queries
(1% CPU time reduction across the entire workload)

● SAP CDS FINA: 1.8% reduction in CPU time for the entire workload
(12% reduction in the total number of GETPAGEs)

●IBM Retail Data Warehouse

● Two queries: 14% and 6% CPU time reduction

www.dkl.com
Data Kinetics

www.epstrategies.com

In-memory Table examples

● DB2 – In-memory table

● DB2 – Table fixed in buffer pools
◦ Structures still support on disc

● VSAM
◦ Fully buffered

● Pure In-Memory Tables
◦ IBM IZTA
◦ DKL tableBASE

● Cobol Internal Tables (other languages too!)
◦ Limited to a primary index
◦ Not Shareable

● Home Grown In-Memory Accelerators
◦ Often from when people built their own everything

Controlled/managed
predominately by DBMS

Controlled/managed predominately by
Application (developer)

www.dkl.com
Data Kinetics

www.epstrategies.com

Db2 Buffer Pools

●Basically: pin the objects in a buffer pool

●Make BP big enough to hold the entire object(s)
◦ Db2 systems with 100s of GBs of buffer pools are increasingly common

●Optionally set PGSTEAL(NONE)
◦ Indicates to Db2 you believe the BP is big enough to hold all of the object(s) in the BP

◦ Doesn’t mean that Db2 won’t steal pages from it if need be
◦ Doesn’t mean that the pool is read-only

◦ Db2 will use async prefetch to pre-load the objects on first reference
◦ Note: Don’t use PGSTEAL(NONE) and FRAMESIZE(2G) together.

◦ NONE & 2G will be treated as LRU & 2G. Use NONE & 1M instead!

●Remember to page-fix your production BPs (at least, maybe dev/test too)
◦ CPU reduction for every I/O to/from the BP

© Enterprise Performance Strategies 37
www.dkl.com
Data Kinetics

www.epstrategies.com

Db2 – Group Buffer Pools

●Rule of thumb for GBP size is sum(local BPs) / 3
◦ Goal is to avoid directory entry reclaims

●BPs with very little update activity may not need as much
◦ Might also consider GBPCACHE(NO) for such

◦ GBP will only be used for cross-invalidation; writes will suffer though

●Other idea: use GBP storage instead of LBP storage
◦ Instead of really large LBPs, use really large GBP
◦ Saves on the amount of memory you need overall
◦ Set with GBPCACHE ALL on the object level

◦ Pages will be copied to GBP as they’re read regardless of inter-system read/write interest

◦ Benefit similar to zHyperLink without actually having to implement zHyperLink
◦ Probably actually a little better since DB2 will check the GBP anyways

© Enterprise Performance Strategies 38
www.dkl.com
Data Kinetics

www.epstrategies.com

VSAM Buffering

●There are 4 types of buffer pool management for VSAM:
◦ NSR - Nonshared Resource

◦ LSR – Local Shared Resource

◦ GSR – Global Shared Resource (no longer used)

◦ RLS – Record-Level Sharing

●Set by the open, not part of the VSAM dataset definition

●See Chapters 4-6 of VSAM Demystified Redbook
◦ https://www.redbooks.ibm.com/abstracts/sg246105.html

© Enterprise Performance Strategies 39
www.dkl.com
Data Kinetics

https://www.redbooks.ibm.com/abstracts/sg246105.html

www.epstrategies.com

Why application managed In-Memory

● a priori knowledge of data in-
memory – allows for
optimized sort/search

●Code path and algorithms
optimized to 4k pages,
maximizing effectiveness of
Cache

◦ Remember following table?

www.dkl.com
Data Kinetics

www.epstrategies.com

High row read rate (small tables, frequent reads)
Reference Data – the many small tables touched during transaction
processing

Rules tables – multiple rules returned to define processing for each
transaction

Temporary Tables
Created, sorted/searched/filtered then abandoned

Avoid I/O

Best Candidates

www.dkl.com
Data Kinetics

www.epstrategies.com

DB2

Finding small frequently read DB2 tables

NB:data from System Tables, not SMF

www.dkl.com
Data Kinetics

www.epstrategies.com

VSAM

Derived from SMF64 data

Reads => CPUEXCPS=> I/O => Wall Clock Opens => Both

www.dkl.com
Data Kinetics

www.epstrategies.com

Summary

●Many (but not all) systems are memory-rich today
◦ And if you’re not, maybe you should be?

●Take advantage of that memory to avoid I/O to
◦ Improve performance

◦ (Potentially) reduce CPU and thus (potentially) reduce costs

●SMF has a plethora of data to help you find your I/O
◦ SMF 42 records has a good level of detail

●Once you’ve found your I/O, avoid it by keeping the data in memory

●Consider in-memory tables to avoid Db2/VSAM and save even more CPU

© Enterprise Performance Strategies 56

Questions??

www.dkl.com
Data Kinetics

	Slide 1: Optimizing Performance at the Speed of Light: Why I/O Avoidance is Even More Important Today
	Slide 2: Contact, Copyright, and Trademarks
	Slide 3: Abstract (why you’re here!)
	Slide 4: EPS: We do z/OS performance…
	Slide 5: DKL intro
	Slide 6: Agenda
	Slide 7
	Slide 8: Clock Speed and Cycles
	Slide 9
	Slide 10: System Event Timescale (Seconds)
	Slide 12: So we should use zHyperLink?
	Slide 13: DASD cache is limited
	Slide 14: The only good I/O is no I/O
	Slide 15
	Slide 16: So, if you avoid I/O…
	Slide 17
	Slide 18: Finding opportunities in SMF data
	Slide 19: SMF 42: not quite ideal, but good
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Sorting
	Slide 32: In-Memory Sort
	Slide 33: In-Memory Sort :DB2
	Slide 34: Sort performance measurements (DB2 v12)
	Slide 35: Sort performance measurements (cont’d)
	Slide 36: In-memory Table examples
	Slide 37: Db2 Buffer Pools
	Slide 38: Db2 – Group Buffer Pools
	Slide 39: VSAM Buffering
	Slide 40: Why application managed In-Memory
	Slide 42: Best Candidates
	Slide 43: DB2
	Slide 44: VSAM
	Slide 56: Summary

