
What I Learned This Month: IBM Java 7 vs Java 6
Scott Chapman
American Electric Power

IBM has been talking up the enhancements that they've put into their Java 7 JVM
on z/OS for a while now and I've been eager to see if I'd have similar results for
some of my workloads. The workload examples that they show only look really
impressive for what appears to be fairly significant multithreaded applications
running in WebSphere Application Server (WAS). We have one significant WAS
workload, a few smaller WAS applications, and various other Java batch
workloads and a few Java started tasks.

Any hope that Java 7 would be some sort of magic bullet was dispelled when I
ran a trivial test batch job (not much more complicated than "Hello World!") under
both Java 6 and Java 7. The Java 7 "HelloWorld" seemed to take significantly
more zAAP CPU time than the Java 6 one. Of course "significant" is relative:
around half a second more. But a half second increase is pretty significant when
the original execution was a quarter of a second!

After that original test, I didn't have time to investigate much further. I did,
however, have an opportunity to mention my results to one of the IBM guys who
knows about such things. He indicated he wasn't surprised by that result. The
Java 7 JVM apparently works a little harder during initilialization, preparing to
optimize things. He suggested, as the published benchmarks suggest, that I
wouldn't see the real Java 7 benefits until I started running more significant
workloads.

I finally had time to circle back to this and run a few more significant tests. The
workloads I chose were ones that were repeatable and somewhat important to
me. But neither was a WAS application and they will be different than your
workloads, so take my findings with a grain of salt. While my conclusions may be
at least partially true for some other workloads, it's also likely that others will
behave entirely differently.

The first test was a single Java batch job. This job is really Data Processing 101:
read some data, write some data. In this case, it reads some data out of a ZFS
directory, transforms it, and writes output data to some files in another directory.
Using a Java 6 JVM, this took 160 zAAP CPU seconds on one of our zEC12s.
That was an average of three runs. Three runs under Java 7 averaged out to 172
seconds. That 7.5% increase is just enough over what I'm seeing for normal
variation in zAAP CPU times to consider it a real increase, not normal variation.
It's not significant to me, but it's interesting.

I also have a continuously running Java started task that periodically fetches data
from the RMF distributed data server, runs some scripts, and records interesting
performance data for me. If Java 7 needs more time to "warm up" to optimize its
execution, this seems like a good test case.

This task is fairly consistent in what it does but there is some small variation
based on the activity of the work that it's monitoring. Therefore, I ran it with
different options for several days to average out any short-term variations and
then compared the average utilizations for similar time periods. I've been running
this task as a 31-bit Java 6 JVM, so that formed my baseline. I compared that to
31 and 64 bit Java 7. I then added the –Xaggressive option which enables
additional optimizations.

While all of my 64-bit test cases used the "compressed references" option, I had
intended to test support for large (1 MB) pages at the same time as the
aggressive option. Unfortunately, while I enabled the –Xlp option, I didn't realize
until later that the JVM was still utilizing 4KB pages. It turns out that I had under-
defined LFAREA in SYS1.PARMLIB(IEASYSxx), so the system was not creating
any large pages at IPL time. Once I corrected that problem, I discovered that we
had never permitted non-authorized programs (such as my JVM for this started
task) to use large pages. The lesson here is not to turn on –Xlp and just assume
your JVM is using large pages. Instead, after turning on –Xlp, check the verbose
garbage collection trace to see whether or not your JVM is actually using large
pages. If not, large pages are probably not available for some reason and you'll
need to check that you've done all the pre-requisite work to allow them to be
used.

I ended up with 5 test cases to compare to the baseline, including a final 64-bit
Java 7 execution with large pages correctly enabled. The results are shown
below.

The variation is pretty small but I can tell you that the results were fairly
consistent over time. So given time to run for an extended duration, it seems that

100%
96% 94%

102% 101% 99%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

the Java 7 JVM is a bit more efficient than the Java 6 JVM. That's definitely good
news. Even better is that with compressed references, the aggressive tuning
options, and large page support, 64-bit Java 7 can potentially be even slightly
more efficient than 31-bit Java 6. As expected, the 31-bit JVM is slightly more
efficient than the 64-bit JVM, so if you are running a relatively small heap,
sticking to 31-bit may still be your best option.

My guess is that a JVM with a larger and more active heap might see a more
significant improvement from the use of large pages. I took a quick look at the
SMF 113 data1 for before and after running the JVM with large pages. There was
a distinct drop off in the calculated percentage of CPU time taken for TLB2
misses on the zAAP, from just under 8% to just under 6%. The zAAP activity on
this test LPAR is dominated by the workload that I was testing, so it's gratifying
that the average zAAP usage for the workload also showed a drop of about 2%
as well. It sure is nice when all my numbers add up and tell a consistent story!

So it does seem that IBM has improved the performance of their Java 7 JVM vs.
Java 6 for long-running JVMs. However, short-lived JVMs may experience a
relatively minor degradation. There are also some tuning options (such as –
Xquickstart) that may improve performance in those scenarios, but I didn't
explore them.

Finally, when enabling large page support for your JVMs, be sure that you've
done all the pre-requisite system work to enable large page support. Checking
the verbose garbage collection trace to confirm large pages are in use is a good
idea—even if you thought you did all the system work correctly.

As always, if you have questions or comments, you can reach me via email at
sachapman@aep.com scott.chapman@epstrategies.com.

1 The SMF 113 records record detailed processor measurements on z10 or above processors.
There is no significant overhead to collecting these records in counter mode and the resulting
data can be useful for validating changes like this as well as being an important input for capacity
planning when moving between machine types.

2 Translation Lookaside Buffer. Wikipedia has a succinct description:
http://en.wikipedia.org/wiki/Translation_lookaside_buffer

mailto:sachapman@aep.com
mailto:scott.chapman@epstrategies.com

