

Key Reports to Evaluate Coupling Facility CPU Utilization

Peter Enrico

z/OS Performance Education, Software, and Managed Service Providers

Creators of Pivotor®

© Enterprise Performance Strategies, Inc.

Email: Peter.Enrico@EPStrategies.com

Enterprise Performance Strategies, Inc. 3457-53rd Avenue North, #145 Bradenton, FL 34210 <u>http://www.epstrategies.com</u> http://www.pivotor.com

> Voice: 813-435-2297 Mobile: 941-685-6789

Peter Enrico : www.epstrategies.com www.epstrategies.com

Contact, Copyright, and Trademarks

Questions?

Send email to <u>performance.questions@EPStrategies.com</u>, or visit our website at <u>https://www.epstrategies.com</u> or <u>http://www.pivotor.com</u>.

Copyright Notice:

© Enterprise Performance Strategies, Inc. All rights reserved. No part of this material may be reproduced, distributed, stored in a retrieval system, transmitted, displayed, published or broadcast in any form or by any means, electronic, mechanical, photocopy, recording, or otherwise, without the prior written permission of Enterprise Performance Strategies. To obtain written permission please contact Enterprise Performance Strategies, Inc. Contact information can be obtained by visiting http://www.epstrategies.com.

Trademarks:

Enterprise Performance Strategies, Inc. presentation materials contain trademarks and registered trademarks of several companies.

The following are trademarks of Enterprise Performance Strategies, Inc.: Health Check[®], Reductions[®], Pivotor[®]

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries: IBM[®], z/OS[®], zSeries[®], WebSphere[®], CICS[®], DB2[®], S390[®], WebSphere Application Server[®], and many others.

Other trademarks and registered trademarks may exist in this presentation

© Enterprise Performance Strategies

Abstract

Key Reports to Evaluate Coupling Facility CPU Utilization

This webinar will walk through and explain several reports that will be useful when evaluating the CPU capacity and usage of coupling facility processors.

Dynamic dispatch, thin interrupts, and the differences of physical CF processor utilization compared to virtual processor utilization will be discussed by Peter Enrico.

EPS: We do z/OS performance...

EPS

- We are z/OS performance!
- Pivotor
 - Performance reporting and analysis of your z/OS measurements
 - Example: SMF, DCOLLECT, other, etc.
 - Not just reporting, but cost-effective analysis-based reporting based on our expertise
- Performance Educational Workshops (while analyzing your own data)
 - Essential z/OS Performance Tuning
 - Parallel Sysplex and z/OS Performance Tuning
 - WLM Performance and Re-evaluating Goals
- Performance War Rooms
 - Concentrated, highly productive group discussions and analysis
- MSU reductions
 - Application and MSU reduction

z/OS Performance workshops available

During these workshops you will be analyzing your own data!

- Essential z/OS Performance Tuning
 - March 20-24, 2023
- Parallel Sysplex and z/OS Performance Tuning
 May 2-3, 2023
- WLM Performance and Re-evaluating Goals
 October 2-6, 2023
- Also... please make sure you are signed up for our free monthly z/OS educational webinars! (email contact@epstrategies.com)

Like what you see?

- Free z/OS Performance Educational webinars!
 - The titles for our Fall 2022-2023 webinars are as follows:
 - Key Reports to Evaluate z16 Processor Caches
 - Understanding System Recovery Boost's Impact on Performance and Performance Reporting
 - ✓ WLM Management of DDF Work: What can you do and what has changed?
 - ✓ Intensity! Understanding the Concepts and Usage of Intensity Measurements
 - ✓ High, Medium, Low: Understanding how HiperDispatch influences performance in z/OS
 - How and why Pivotor is different than other performance management reporters
 - ✓ Putting a lid on XCF
 - ✓ Key Reports to Evaluate Usage of Parallel Access Volumes
 - ✓ Key Reports to Evaluate Coupling Facility CPU Utilization
 - Understanding how memory management has evolved in z/OS
 - Let me know if you want to be on our mailing list for these webinars

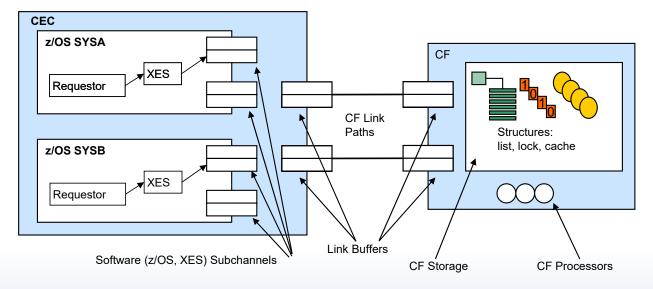
If you want a free cursory review of your environment, let us know!

- We're always happy to process a day's worth of data and show you the results
- See also: <u>http://pivotor.com/cursoryReview.html</u>

© Enterprise Performance Strategies, Inc.

Peter Mille Patralegistrategies.com

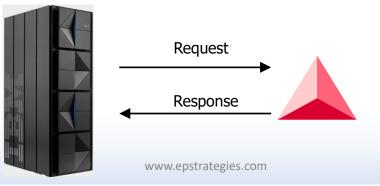
Performance view of CF Requests



□ z/OS Processing

- S/W product making CF request
- XES receives the request and sets up request
- Sub-channel requested
- Path / Link requested Request a path
- Data transfer over link
- On return, S/W processing to handle CF request

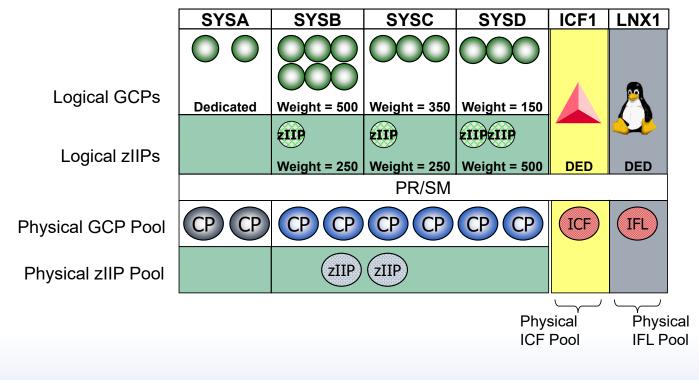
□ Coupling Facility Processing


- CF waits for request (various options)
- CF processor to process the request
- List, Lock, Cache structure processing
- Storage for structures
- Duplexing considerations

Coupling Facility Tuning Questions

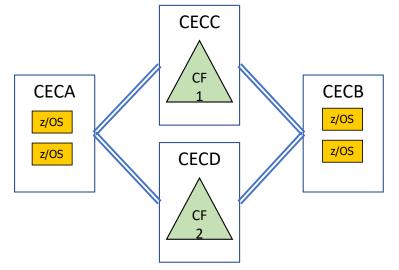
- Evaluation of Processor
 - How many CPUs are configured to the coupling facility?
 - Are the coupling facility processors dedicated or shared
 - If coupling facility processors are shared is thin interrupt support turned on?
 - What is the coupling facility processor utilization?
 - What is the break down coupling facility utilization by structure?

Coupling Facility Processors

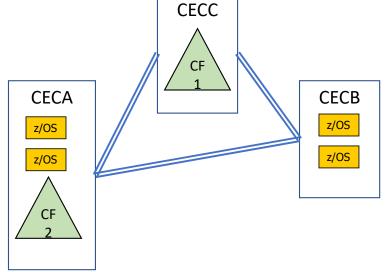

• Evaluating CF processor utilization requires an understanding of the CF config

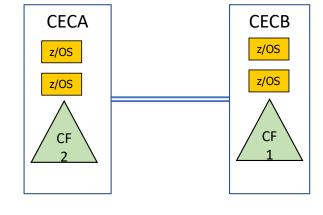
- As a reminder, coupling facilities run
 - In LPARs with ICF processors
 - Shared processors
 - Dedicated processors
 - In LPARs with CP processors
 - Shared processors
 - Dedicated processors (rare to non-existent)
- Coupling facilities can
 - Run on CECs completed separated from the exploiting z/OS images
 - Run on CECs where one of more z/OS exploiting image is also running

zArchitecture Machines Have Pools of Processors


 Each pool of process can be logically configured to a partition with its own weight

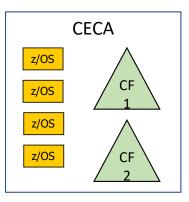
Parallel Sysplex with External CFs


- "External" or "Standalone" Coupling Facilities dedicated to running CF LPARs
- This configuration was very common in the 1990s when CECs were more capacity-constrained and (slightly) less reliable
- No single point of failure from a processing perspective
 - Planned maintenance can be done non-disruptively as well
- Expense of external CFs typically limits their use to larger environments
 - i.e. likely larger than shown here
- More than 2 CFs can be used in a single Sysplex, but that's rare


Parallel Sysplex with 1 External CF

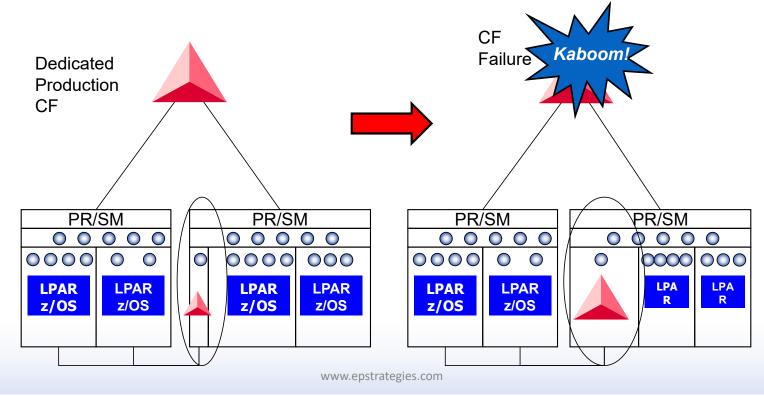
- Single external CF + Single internal CF LPAR
 - CF1 normally used, CF2 as backup
- No single point of failure from a processing perspective
 - Planned maintenance can be done non-disruptively as well
- Saves a bit of money compared to having 2 external CFs
- Connections from z/OS to CF on same CEC are internal links
 - Memory to memory transfers facilitated by microcode (no physical connection)

Parallel Sysplex with Internal CFs


- Dual Internal CFs: one on each CEC
- Can have a single point of failure, e.g. a single CEC failure could impact the Sysplex
 - Dual failure of both the CF and the z/OS LPARs that would be needed to rebuild those CF structures
 - CF Structure duplexing is used to address this concern
 - Planned maintenance can be done non-disruptively
- Least expensive way to get to Parallel Sysplex High Availability without a single point of failure
 - Structure Duplexing does add overhead though
- Most common configuration in mid-size environments

Parallel Sysplex In A Box

- All LPARs (z/OS and CF) in a single CEC
- The CEC becomes a single point of failure
 - CF Structure duplexing would only help a CFCC code failure situation, not a CEC-wide failure
 - Planned maintenance can be done non-disruptively if there are two CF LPARs (highly recommended)
- Least expensive way to get to most of Parallel Sysplex availability benefits for planned maintenance
 - Although the CEC is a single point of failure, smaller sites that are looking to implement Parallel Sysplex for planned maintenance availability sometimes start here



CF with shared CP Engines

- Some installations do use CP engines for coupling links
 - MSUs consumed count towards pricing
 - Variety of reasons why customers do this. One example:

Coupling Facility Processor Measurements

• Used to ensure enough CF processor capacity

- Major cause of response time objectives being missed
- Monitor 'Processor Summary' section of 'CF Usage Summary' report

Information About CF Hardware

Model Number, Version, CF Level

Load on the Coupling Facility processor resource

- Average CF Utilization (% Busy)
- Logical Processors: Defined and Effective

COUPLING FACILITY	3906	MODEL M01	CFLEVEL 23	DYNDISP OFF		
AVERAGE CF UTILIZATION	I (% BUSY)	6.2	LOGICAL PROCESSORS:	DEFINED 1	EFFECTIVE 1.000	
				SHARED 0	AVG WEIGHT 0.0	

Coupling Facility Processor Measurements

• The SMF data does show how much CF CPU is consumed for each structure

• The utilization presented is the percent of busy that each structure used

- Thus, it is a percentage of a percentage
- These values have super limited usage

CF processing for this structure is not 56.7% of the CF engine. Instead, it is 56.7% of the time the processor has work to do.

											/			
GENERA	L STRUCTURE SUMMAR	RY												
					% OF		% OF	% OF	AVG	LST/DIR	DATA	LOCK	DIR REC/	
	STRUCTURE			ALLOC	CF	#	ALL	CF	REQ/	ENTRIES	ELEMENTS	ENTRIES	DIR REC	
TYPE	NAME	STATUS CHG	ENC	SIZE	STOR	REQ	REQ	UTIL	SEC	TOT/CUR	TOT/CUR	TOT/CUR	XI'S	
												4-	4-	
LIST	DFHCFLS_DAGCPTG	ACTIVE	NO	7м	0.1	7126	9.6	4.4	7.92	1754	1500	N/A	N/A	
									ſ	37	3	N/A	N/A	
	IXCSTR1	ACTIVE	NO	13M	0.1	52056	70.3	56.7 🗖	57.84	987	950	N/A	N/A	
										1	18	N/A	N/A	
	IXCSTR4	ACTIVE	NO	51M	0.4	11262	15.2	29.0	12.51	10K	10K	N/A	N/A	
										1	16	N/A	N/A	
LIST	ISTGENERIC14	ACTIVE	NO	12M	0.1	1221	1.6	0.8	1.36	29K	563	4	N/A	
										3	0	0	N/A	
	SYSARC DC000 RCL	ACTIVE	NO	7M	0.1	1859	2.5	1.1	2.07	3849	3808	16	N/A	
										4	0	0	N/A	

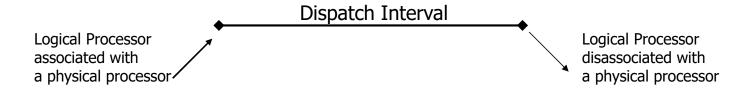
Coupling Facility Processor Utilization

Coupling facility processor utilization is reported in two vantage points:

• Viewpoint 1:

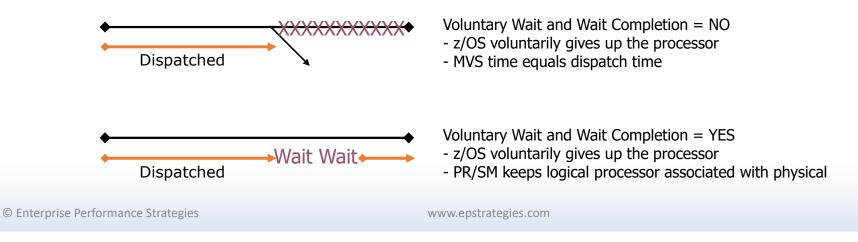
- Examining coupling facility processor utilization of the physical processor
- Meaning, how busy in the CF image keeping the processor?


• Viewpoint 2:


- Examining coupling facility processor utilization from a coupling facility point-of-view
- Meaning, when dispatched, how busy is the CF doing work?

• Key lesson is both of these utilizations need to be examined and understood

(PR/SM) Dispatching

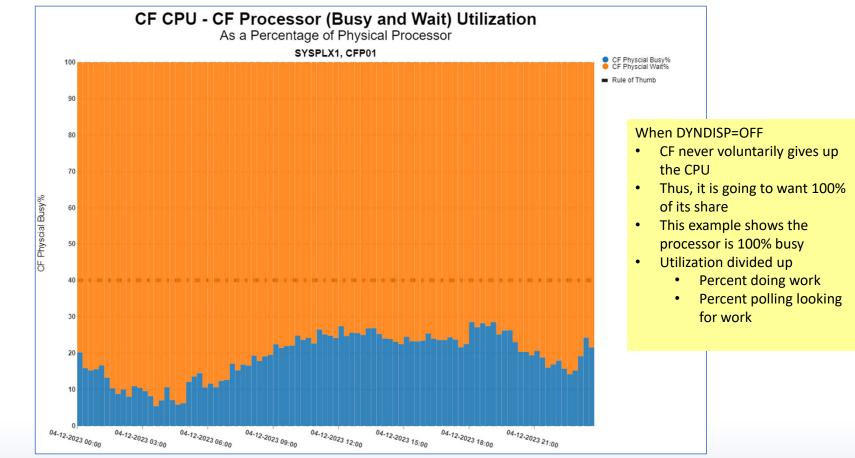

Dispatch Time

Wait Completion

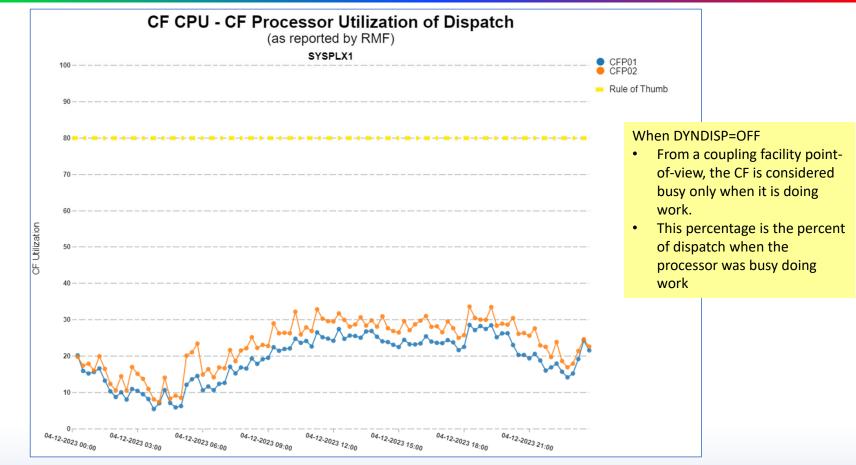
• When z/OS voluntarily gives up the CPU, it is going into a 'wait' state

CF LPAR Active Polling with Shared Engines

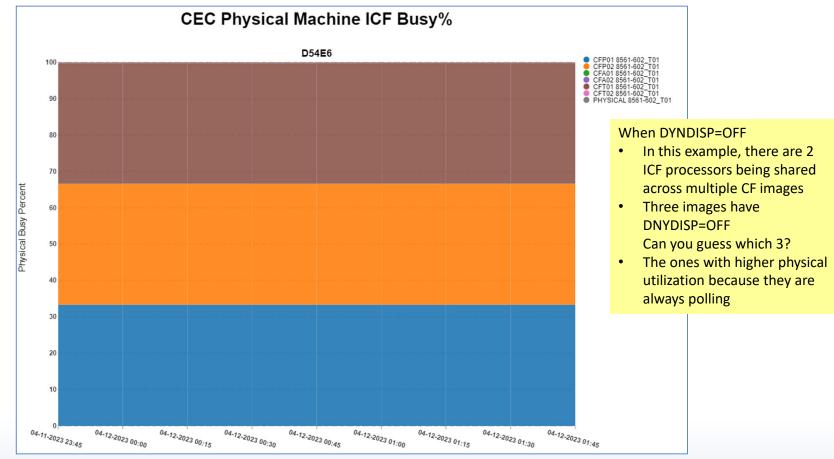
DYNDISP=OFF


- When dispatched, the CF utilizes a polling algorithm to constantly look for work
- CF LPAR appears to have 100% demand for the processor(s)
- PR/SM controls CF LPAR time slicing
- CF always runs until the end of the current PR/SM dispatch interval (time slice)
- Processor might get taken awhile while there is work out standing
- CF Response times can be erratic

Processor Utilization PR/SM Point-of-View



© Enterprise Performance Strategies


Processor Utilization PR/SM Point-of-View

© Enterprise Performance Strategies

© Enterprise Performance Strategies

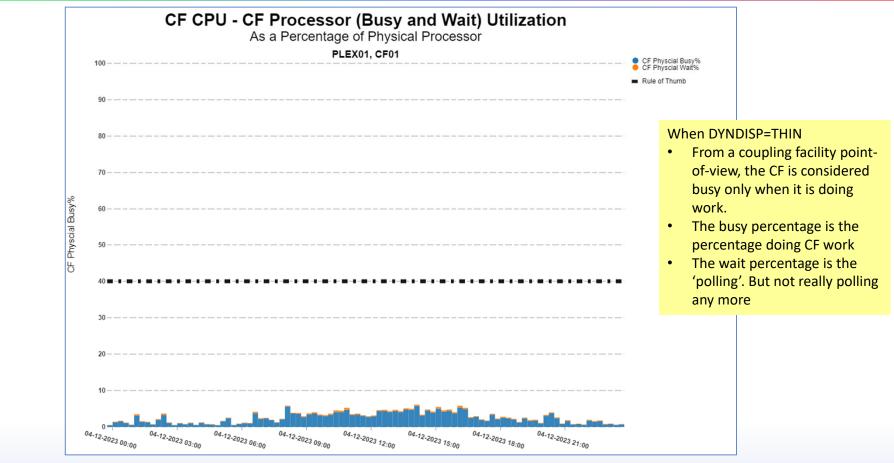
CF LPAR Dynamic Dispatching

- PR/SM and the CF implement a dynamic sleep pattern algorithm to allow processor to be un-dispatched.
- Polling still happens, but is somewhat limited and duration of polling is dynamic
- CF can have processor un-dispatched prior to end of current time slice
- When sleep time is expired, CF re-dispatched
- Less likely to lose the processor while work is outstanding
- Results in better responsiveness for shared CF engines
 - But dedicated engines still better

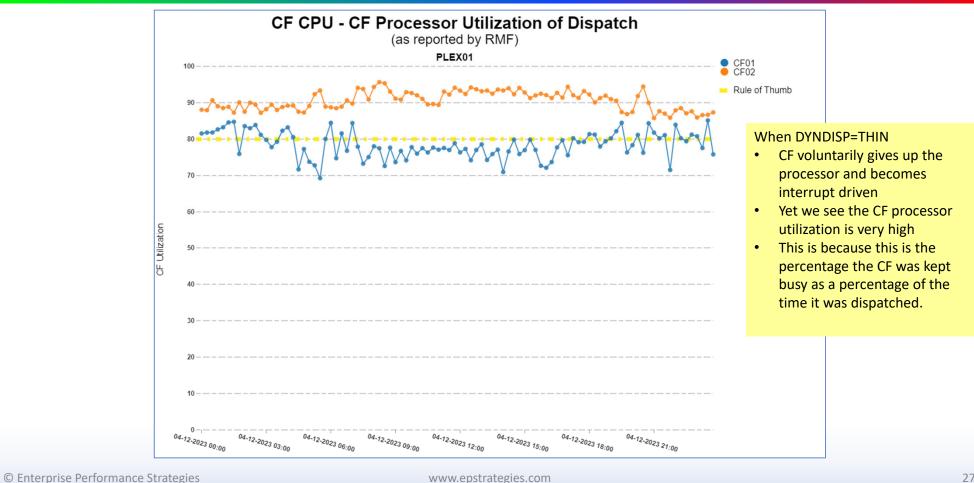
< This CF	- Dispa	atch Time Slice	\longrightarrow	Sleep	$\xrightarrow{\text{slice}}$	Dispatch Time	Slice	Sleep slice	\rightarrow
Dispatchable Work	Poll	Dispatchable Work	Poll		Wake Wait	Dispatchable Work	Poll		

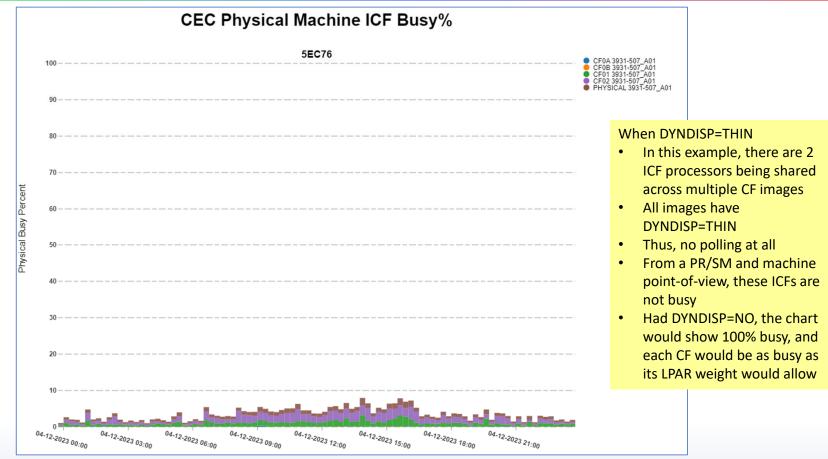
Thin Interrupts

DYNDISP=THIN

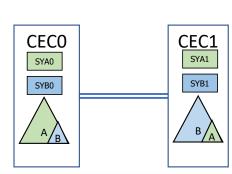

- Available on CFCC 19+ (z12 GA2)
- Like DYNDISP=ON but not based on a dynamic sleep pattern algorithm
- CF will give up processor almost immediately when there is no work to do
- Gets interrupt to wake up when work arrives
- Service time close to dedicated engines
 - Dedicated still better, but margin is much thinner
- Best option when multiple CF LPARs share engines
 - i.e. Use DYNDISP=THIN, not DYNDISP=ON if sharing engines (z12 and later CFs)
 - Default on z15 and above

Processor Utilization PR/SM Point-of-View




© Enterprise Performance Strategies

Processor Utilization PR/SM Point-of-View


© Enterprise Performance Strategies

Summary: Sharing CF Engines

- Generally, best to dedicate engines to production
- If sharing for engines for dev/test Sysplexes
 - Set weights appropriately
 - Use DYNDISP=THIN
 - If sharing an engine between two CECs for dev/test purposes and you don't need duplexing, consider skewing the weights and putting all activity from each sysplex into one CF:

PLEXA's CF activity directed to CFA0, CFA1 used just for backup for planned maintenance

This only works if you're not doing duplexing for these Sysplexes.

PLEXB's CF activity directed to CFB0, CFB0 used just for backup for planned maintenance

Analyzing CF Processor

- Check if CF processor utilization is too high?
 - IBM recommendation is CF should be no more than 40% to 50% busy
 - CPU and Model to understand capacity and expectations
 - CFLEVEL to understand functionality
 - %BUSY to understand load
 - DEFINED to understand what is configured
 - EFFECTIVE to understand what is being used
 - Remember, service times is a function of
 - CF utilization
 - Speed of sending processor verses CF

PROCESSOR SUMMARY					
COUPLING FACILITY	8561	MODEL T01	CFLEVEL 24	DYNDISP THIN	
AVERAGE CF UTILIZATION	(% BUSY)	69.3	LOGICAL PROCESSORS:	DEFINED 2 SHARED 2	EFFECTIVE 0.001 AVG WEIGHT 440.0

Analyzing CF on Same CEC as z/OS

• When z/OS and CF are on the same CEC verify if it is DED or shared

- If shared, CF will try to use all the processor it can get (tight polling)
- Contention from other partitions will limit what CF can get
- If shared, make sure the CF is not capped, and give a sufficient weight
- Otherwise, will elongate CF response times

							PAR	TI	TION	DAT	A REPOR	ιT			P	AGE	2
z/OS V2R4			SYSTEM ID CPRO				1	DATE 1	0/15/2022		INTERVAL 15.00.035						
					RP	r vers	SION V21	R3 RMI	? '	TIME 0	9.45.00		CYCLE 1.000	SECONDS			
- MVS PARTI	TION	NAME			ABC	PRO	PI	IYS PI	ROC NUM	9	GROU	JP NAME	GROUPC	INITIA	L CAP N	c	
IMAGE CAP	ACIT	Y			:	189			CP	3	LIM	т	189	LPAR H	W CAP N	С	
NUMBER OF	CON	FIGURE	D PARTI	TIONS		17			IFL	2	AVA	LABLE	20	HW GRC	UP CAP N	С	
WAIT COMP	LETI	ON				NO			ICF	2				ABS MS	U CAP N	С	
DISPATCH	INTE	RVAL			DYNA	MIC			IIP	2							
- 0	- PA	RTITIC			CAPPII								ERAGE PROCES	SOR UTILIZATI	ON PERCEN		
-										- AIGH	TIME DATA	TOGIC	AL FROCESSOR				
NAME	s	WGT	DEF	ACT	DEF	WLM%	NUM	TYPE	EFFECT		TOTAL	EFFEC			EFFECTIV	E TO	TAL
-		WGT DED	DEF	ACT	DEF	WLM%			EFFECT	IVE		EFFEC		L LPAR MGMT	EFFECTIV		
NAME -	A		DEF	АСТ	DEF	WLM %	1	ICF		IVE 9.999	TOTAL		TIVE TOTA	L LPAR MGMT		0 50	. 00
NAME - CFCPROD	A A	DED	DEF	ACT	DEF	WLM%	1	ICF	00.14.5	IVE 9.999	TOTAL	EFFEC	TIVE TOTA 00.0 100.	L LPAR MGMT	50.0	0 50 0 50	. 00
NAME - CFCPROD CFCRS	A A	DED	DEF	ACT	DEF	WLM%	1	ICF	00.14.5	IVE 9.999	TOTAL 00.15.00.004 00.15.00.004	EFFEC	TIVE TOTA 00.0 100.	L LPAR MGMT 0 0.00 0 0.00	50.0	0 50 0 50	. 00

Analyzing CF Processor cont...

- If Coupling facility utilization > 50%
 - Monitor spikes in CF utilization
 - Can be done with online CF monitor reports or SMF analysis
 - Usually due to long running commands
 - If spike exists
 - Review Structure Summary
 - Use to narrow down to structure
 - May show for spikes in Sync rates (# REQ TOTAL/SEC)
 - Review Structure Activity Report
 - Use to narrow down to system sending requests
 - Look at Sync rates by system
 - Usually things like DB2 checkpoint processing, DB2 Delete_Name processing, and IMS Detaches
 - May also be due to a batch job
 - OK cause for a spike

Comments from Jamie... and then Q & A

Questions about content of webinar?

Of maybe general performance questions?

Instructor: Peter Enrico

www.epstrategies.com