
www.epstrategies.com

Mainframe Efficiency At
High Utilization

Bob Rogers

www.epstrategies.com

Contact and Trademarks
Questions?
Send email to performance.questions@EPStrategies.com, or visit our website at
https://www.epstrategies.com or http://www.pivotor.com.

Trademarks:
Enterprise Performance Strategies, Inc. presentation materials contain trademarks and
registered trademarks of several companies.

The following are trademarks of Enterprise Performance Strategies, Inc.: Health Check®,
Reductions®, Pivotor®

The following are trademarks of the International Business Machines Corporation in the
United States and/or other countries: IBM®, z/OS®, zSeries®, WebSphere®, CICS®, DB2®,
S390®, WebSphere Application Server®, and many others.

Other trademarks and registered trademarks may exist in this presentation

© Robert Rogers

www.epstrategies.com

EPS: We do z/OS performance…
● Pivotor – z/OS performance reporting and analysis software and services

◦ Not just SMF reporting, but analysis-based reporting based on expertise
◦ www.pivotor.com

● Education and instruction
◦ We teach our z/OS performance workshops all over the world
◦ Want a workshop in your area? Just contact me.

● z/OS Performance War Rooms
◦ Intense, concentrated, and highly productive on-site performance group

discussions, analysis and education
◦ Amazing feedback from dozens of past clients

● Information
◦ We present around the world and participate in online forums

© Robert Rogers

www.epstrategies.com

z/OS Performance workshops available
During these workshops you will be analyzing your own data!
●Essential z/OS Performance Tuning

◦ September 16-20, 2024

●Parallel Sysplex and z/OS Performance Tuning
◦ August 20-21, 2024

●WLM Performance and Re-evaluating Goals
◦ February 19-23, 2024

●Also… please make sure you are signed up for our free monthly z/OS
educational webinars! (email contact@epstrategies.com)

© Robert Rogers

www.epstrategies.com

Like what you see?
●The z/OS Performance Graphs you see here come from Pivotor

●If you don’t see them in your performance reporting tool, or you just want a
free cursory performance review of your environment, let us know!
◦ We’re always happy to process a day’s worth of data and show you the results
◦ See also: http://pivotor.com/cursoryReview.html

●We also have a free Pivotor offering available as well
◦ 1 System, SMF 70-72 only, 7 Day retention
◦ That still encompasses over 100 reports!

© Robert Rogers

www.epstrategies.com

Like what you see?
● Free z/OS Performance Educational webinars!

◦ The titles for our Fall 2023-2024 webinars are as follows:
 LPAR Configurations to Avoid
How Different are High, Medium, and Low Pool Processors?
 CPU Critical: A Modern Revisit of a Classic WLM Option
Mainframe Efficiency at High Utilizations (Bob Rogers)
 I/O, I/O It’s Home to Memory We (Should) Go
 30th Anniversary of WLM : A Retrospective and Lessons Learned
• Mainframe Efficiency at High Utilizations (presented by Bob Rogers)
• Understanding and Measuring Warning Track on z/OS
• 30th Anniversary of Parallel Sysplex - A Retrospective and Lessons Learned
• Batch Initiators – WLM Managed or JES Managed?
• AI on Z: Exploring Common AI Terms on System Z
• Analyzing 'Per CPU' Utilizations
• AI on Z: Exploring new SMF Measurements

◦ Let me know if you want to be on our mailing list for these webinars

● If you want a free cursory review of your environment, let us know!
◦ We’re always happy to process a day’s worth of data and show you the results
◦ See also: http://pivotor.com/cursoryReview.html

© Robert Rogers

www.epstrategies.com

Overview

In 2007, Gary King wrote a short paper to answer the questions,
“Can Any Single Workload Be Run At 100% CPU Busy?” and,
“Is there a growth in CPU time per transaction at higher utilization?”.

Unfortunately, the answers are “No, they can’t” and “Yes, it grows”.

Since homogeneous workloads cannot be efficiently run at 100% CPU busy,
we can change the question to:
“How can a platform efficiently run multiple diverse workloads?”.

In this presentation, we discuss some of the more recent technologies that
enable the IBM mainframe platform to perform very well at high utilization
with heterogeneous workloads despite these challenging realities.

© Robert Rogers

www.epstrategies.com

What it takes to be efficient
To operate efficiently at high utilization, it is necessary to:
1. keep the CPUs running near 100% busy.

◦ This can be prevented by insufficient overlap of CPU and I/O. Work is delayed waiting for its data and
the CPUs can go idle.

2. devote nearly all the CPU cycles to doing useful work rather than unproductive
overhead.
◦ For example, inter-processor serialization can lead to “spinning” which accomplishes no real work.

3. ensure that the most important work achieves it performance goals.
◦ This may cause less important work to suffer when demand is high, but such is life.

© Robert Rogers

www.epstrategies.com

Running Multiple Diverse Workloads
• The primary technology that is used to run multiple workloads on a single

processor is virtualization.

• The IBM mainframe supports powerful, multi-tier virtualization with PR/SM in the
hardware and z/VM as a software product.

Here is a simple schematic of
PR/SM sitting between the
operating systems and the
hardware.

z/VM also can be added on top
of PR/SM to provide a second
level of virtualization.

* Multiple workload on z/OS
will be discussed later.

© Robert Rogers

www.epstrategies.com

Virtualizing Production Workloads

Installations have been able to run workloads in a virtualized environment
since the 1970s, but it wasn’t the dominant way to operate until the
introduction of PR/SM in the late 1980s.

PR/SM allows an installation to define a number of partitions on a physical box
and give each a guaranteed share of the total processor capacity.

It redistributes any guaranteed share not consumed by a partition (called
white space) to other partitions which have more work than they can do with
their guaranteed share.

Obviously, this goes a long way toward getting the utilization of the whole box
up near 100%.

Partitions A and C are given
access to the share that
partition B is unable to
consume

Partition
B

Partition A

Partition C

© Robert Rogers

www.epstrategies.com

HiperDispatch
To use the extra capacity other partition couldn’t use, a partition
needs to have extra logical processors beyond what it needed to
consume its guaranteed share.

Non-HiperDispatch spreads the guaranteed share and any extra
share across all the logical processors and experience PR/SM
dispatching and cache damage overheads.

HiperDispatch assigns vertical high processors that have 100% share
and experience no PR/SM dispatching or cache damage.

The vertical medium processors have split the remainder of the share
and can consume some additional share.

Vertical low processors are left “parked”, i.e. running no work, until
there is additional share, white space, left by other partitions. When
white space disappears, they are parked again.

Partition with 3.3
CPU share.
6 horizontals each
with 55% share.

Horizontal CPU
Management

Partition with 3.3
CPU share.
• 2 Hi w/ 100%
• 2 Med w/ 65%
• 2 Low w/ 0%.

Vertical CPU
Management

© Robert Rogers

www.epstrategies.com

Unparking to consume white space

Periodically, z/OS asks PR/SM if there is any white space
left unconsumed by other partitions.

If it can get more white space than can be consumed by
the vertical medium processors, z/OS may unpark one of
the vertical low processors and start dispatching work to it.

Later, there may be insufficient white space available so
z/OS will stop dispatching work to the unparked vertical
low and park it again. Partition with 3.3 CPU

share plus 0.8 white
space.
• 2 Hi w/ 100%
• 3 med* w/ 70%
• 1 Low w/ 0%.

Vertical CPU
Management

* When a vertical low is unparked, it acts like a vertical medium. The guaranteed medium share
plus the donated white space is shared across all the mediums and unparked vertical lows.

Partition with 3.3 CPU
share.
• 2 Hi w/ 100%
• 2 Med w/ 65%
• 2 Low w/ 0%.

Vertical CPU
Management

© Robert Rogers

www.epstrategies.com

The Short Engine Problem

The short engine problem is not new, but HiperDispatch has created a new, more virulent variation.

A short engine is a logical processor that is allotted a very small share.
• There can be relatively long periods when a short engine is not dispatched by PR/SM.
• This is a problem if there is important work running on it when it stalls.

HiperDispatch, if anything, makes the problem worse because a vertical low processor that is unparked because
momentarily there is some white space can get stalled for an indefinite duration if the whitespace disappears.

z/OS asks PR/SM about whitespace only every few seconds. It will repark an unparked vertical low if the amount of
white space available to the vertical low drops below a threshold to prevent the vertical low from becoming “too
short”. This impedes the ability to run the box at 100% utilization.

© Robert Rogers

www.epstrategies.com

Warning Track

An architectural feature called Warning Track greatly mitigates the short engine problem.
Like the warning track of a baseball field, it warns that you’re about to run into a wall.

Several microseconds before PR/SM is scheduled to take the physical processor away from
a logical processor, it signals the operating system with an external interrupt.

If z/OS enables in time to receive the signal, it un-dispatches the work it is currently
running on that logical processor so that it can later be dispatched on some other logical
processor. Then it notifies PR/SM that it’s safe to un-dispatch the logical processor.

The work is not stranded on logical processor that may not run again for an extended time

Any remaining microseconds left to the time-slice when PR/SM takes the physical
processor are later given back to the partition.

© Robert Rogers

www.epstrategies.com

Second Metric: Doing Useful Work
As capacity increases there is a phenomenon called the large systems effect.
• The added capacity enables more in-flight units of work

• There are longer queues and larger data structure to represent the work

• These queues and structures are accessed more frequently

• Overhead accessing the structures increases with the square of the capacity increase.

• So, the percentage of overhead increases as the capacity increases

• This can only be addressed with better algorithms.

As more processors are added to the system there is an MP Effect
• With more processors, there is more inter-processor communication

• There is more contention for access to control structures, so serialization overhead goes up – in
some cases exponentially.

© Robert Rogers

www.epstrategies.com

Flattening the MP Effect
●One way to reduce the overhead of an increasing number of processors is to reduce

inter-processor communication.
◦ An invention called reduced preemption opened the possibility for z/OS to support 10s of processor engines in a

single image.
◦ Reduced preemption is so interesting because it uses the source of the problem to construct a solution.

●Another source of MP overhead is serialization.

The more processors there are, the more contention there will be for system locks.

There are several unique architecture features that help reduce the cost of this
contention.

• Strongly coherent memory – no need for a sync instruction.
• Signal Processor Sense Running Status – find out if other logical processors are running.
• The interlocked update facility – atomic update of memory fields. Transactional Execution – serialized

update without explicit locks.

© Robert Rogers

www.epstrategies.com

Signal Processor Sense Running Status
● In a system with a large number of processors, the processors can spend significant time spinning for system

locks.
◦ That is, just staying in a tight loop until the lock is freed by the current holder.
◦ Multiple processors can be spinning on the same lock.

● In a virtual environment, it is an option to yield the remaining time-slice of a processor rather than continue
spinning so that some other logical processor can use the capacity.

● Unfortunately, the trip through PR/SM to yield is quite expensive.
◦ Yet, spinning while the holder is not even dispatched by PR/SM is a total waste.

● The Signal Processor Sense Running Status enables the lock requester to know if the current hold is actually
running.
◦ If it is, the spinning continues.
◦ If not, the remainder of the time-slice is yielded.
◦ This greatly reduces the waste of spinning unnecessarily.

© Robert Rogers

www.epstrategies.com

Third Metric: Doing the Important Work
Decades back, IBM started on the road to managing system capacity based on workload characteristics
and business importance.

◦ This was manifested in the System Resource Manager (SRM).

SRM was effective, but it required a human performance analyst to set about 60 parameters that would
then guide system behaviour.

◦ It also was not dynamically adjusted based on changing conditions.

It was not unusual for an installation to be using specifications that were many years old.

These deficiencies were addressed with the Workload Manager (WLM) which was introduced in the mid
1990s and has been repeatedly expanded and enhances.

© Robert Rogers

www.epstrategies.com

The Workload Manager
WLM relieves an installation of having to set the individual performance parameters.

◦ Instead, the installation can assign business importance and performance goals to the diverse workloads
running on a z/OS system.

WLM dynamically adjusts internal performance parameters to ensure that the most important workloads
continue to achieve the stated goals and distributes the remaining capacity to other workloads based on
their relative importance and goals.

While ensuring that the most important workloads achieve their goals, WLM does not waste capacity by
allowing those workloads to overachieve their goals while starving less important workloads.
● This is important for work that has no specified goal (called discretionary).

Internal performance parameters are adjusted in real time based on statistical observations so that
resource utilization is constantly optimized based on installation policy.

© Robert Rogers

www.epstrategies.com

WLM doesn’t overdo it

While WLM ensures that during times of shortage, capacity is given to the most important workloads, it must
not completely starve any workload.

Even low importance work can hold important resources.
◦ For example, a batch job with no specific performance goal (called discretionary in WLM terminology) can hold an

important DB2 latch.

If that job completely stalls while holding an important latch, high importance transactional work may need
that latch and back up behind the stalled job that holds it.

◦ Depending upon the importance of the lock or latch involved, the negative impact can be dramatic.

WLM prevents this problem with an algorithm called Trickle.
◦ An installation can specify a percentage of the capacity that z/OS can distribute “out of priority order” to lower

importance work to prevent these damaging stalls.

© Robert Rogers

www.epstrategies.com

Mainframe Millicode

The name millicode is given to the high-level microcode used to implement or augment many of the IBM
mainframe architectural facilities

◦ It provides a platform for many of the innovations discussed above.

Unlike traditional microcode, millicode has no communication latency between the main CPU and a
microcode engine because millicode runs on the same CPU as application code.

In addition to implementing the published z/Architecture, the IBM mainframe CPU chip provides a millicode
mode which implements all the z/Architecture hardware instructions plus additional instructions available
only in millicode mode.

There is also another set of registers so that there is no need to save and restore the application program or
operating system registers when entering and exiting a millicode routine.

© Robert Rogers

www.epstrategies.com

An Example of Millicode Efficiency
The Signal Processor (SIGP) instruction is used to perform several functions in a multiprocessor
environment.

◦ It is implemented in millicode.

An example that illustrates the efficacy of this millicode layer is the SIGP Sense Running Status (SIGP SRS)
facility mentioned earlier.

z/OS wants to know if some other logical processor in its partition is currently running or if it is not currently
dispatched by PR/SM.

Asking PR/SM would be very expensive because it would cause the guest to un-dispatched and then re-
dispatched – both are heavy duty operations – in addition to looking at the control structures to find the
answer.

Instead, an invocation of the SIGP SRS millicode routine can supply the answer in the time of few dozen
instructions.

With SIGP SRS, wasteful spinning for locks can be reduced without introduction additional other overheads.

© Robert Rogers

www.epstrategies.com

Conclusion
Without mentioning:
● Chip frequencies of greater than 5 gigahertz
● Independent I/O channels than operate in parallel and free the CPU to do more work.
● High Performance Ficon (zHPF) to greatly speed up Disk I/Os
● Parallel Sysplex – nearly unlimited capacity with nearly 100% availability
● Intelligent Resource Manager

…. we have shown why you can efficiently run z/OS workloads on the IBM Mainframe at very high utilization
without fear of response time delays for critical transactional and batch work.

The answer is constant innovation, enhancement and optimization on every layer of the mainframe
platform.

© Robert Rogers

www.epstrategies.com

Some additional reading
Gary King’s paper
https://www.ibm.com/support/pages/system/files/inline-files/gking_high_util_v1.pdf

A 2019 paper on Reduced Preemption
Titled: The Jiu Jitsu of Reduced Preemption

A 2019 paper on Warning Track
Titled: Warning Track

Nice write-up on WLM in Wikipedia
https://en.wikipedia.org/wiki/Workload_Manager

See Wikipedia article on millicode (the link to my IBM Systems Magazine article is dead)
https://en.wikipedia.org/wiki/Millicode

© Robert Rogers

www.epstrategies.com

Questions?

© Robert Rogers

